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The K-property of cylindric billiards given on the 4-torus is established. These 
billiards are neither "orthogonal," where general necessary and sufficient condi- 
tions were obtained by D. Szfisz, nor isomorphic to hard-ball systems, where the 
connecting path formula of N. Simfinyi is at hand. 
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1. INTRODUCTION 

Motivated by a question of John Mather, a systematic study of  toric 
billiards with cylindric scatterers was initiated in ref. 11. Since this class of 
billiards is relatively simple, one can hope for general necessary and suf- 
ficient conditions for the ergodicity (and the K-property)  of these systems. 
Indeed, in ref. 12 necessary and sufficient conditions were obtained for the 
ergodicity of a subclass: the family of orthogonal cylindric billiards. 

Despite the simplicity of the category, to obtain a complete answer 
does not promise to be very easy because cylindric billiards contain hard- 
ball systems as well. For  them, however, the celebrated Boltzmann-Sinai  
ergodic hypothesis is still not  settled in general. For  the reader interested 
in the relation of cylindric billiards and hard-ball systems on one hand, and 
in the recent status of the Boltzmann-Sinai  ergodic hypothesis on the other 
hand, we will return to these questions after the formulation of  the main 
result of the present work. 

In this paper .we consider cylindric billiards on the 4-torus with two 
nonor thogonal  cylindric scatterers. For  brevity of exposition, we only treat 
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cases when the bases of these cylinders are 2D discs. The philosophy 
behind this restriction is that, in general, the higher the dimensions of the 
bases are, the easier the proof of ergodicity becomes. 

Consider on a 4-torus 1-4:=R4/D two cylinders C J : = { x ~ T 4 :  
dist(x, AJ)<~rJ}, j=  l, 2. Here D is an arbitrary rank-four discrete sub- 
group (a lattice) in the Euclidean space R 4 and the metric "dist" is 
inherited from the usual Euclidean metric of R 4 by factorization with 
respect to D. The "axes" A j of these cylinders C j are supposed to be cosets 
with respect to two transversal 2-dimensional subtori of 71-4. Without loss 
of generality we can assume that these tori A j contain the origin, i.e., they 
themselves are two transversal 2-dimensional subtori. 

Denote Q : = T 4 \ ( C t u C  2) and M : = Q •  3, where S d is the unit 
d-sphere. M =  {x=(Q ,  v)} is the phase space of the billiard given in 
the domain Q possessing cylindric boundaries. The dynamical system 
(M, S a, alp), where S R is the dynamics defined by uniform motion inside 
the domain and specular reflections at its boundary (the scatterers!) and dp 
is the Liouville measure, is the o, lindric billiard we want to study. (As to 
notions and notations in connection with semidispersing billiards we follow 
ref. 4.) To avoid unnecessary complications we assume that the radii r t, r 2 
are sufficiently small, so that the configuration space is connected. 

The cardinal example of a billiard with nonorthogonal cylindric 
scatterers--fulfilling all conditions of the upcoming theorem--is the billiard 
system of three disks in the two-dimensional torus ~-2, where only the first 
disk interacts (collides elastically) with the others, while the interaction of 
the other two disks with each other is "canceled" and they are allowed to 
overlap. 

Our main result is the following: 

Theorem. A sufficient condition [besides the already mentioned 
transversality dim(A ~ c~ A 2) - -0]  for the K-property of the cylindric billiard 
introduced before is that A t be transversal to the orthogonal complement 
L 2 of A z or, equivalently, A 2 be transversal to the orthogonal complement 
L ~ of A t. (Here A j is identified with the corresponding subspace of R4.) 

As indicated before, we--for the interested reader--are going to present 
some remarks on the relation of cylindric billiards to hard-ball systems and 
provide a summary of earlier results. 

Assume that, in general, a system of N (/>2) balls of radii r > 0  are 
given on T", the v-dimensional unit torus (v 1> 2). Denote the phase point 
of the ith ball by (qi, v;) ~ T" x R". The configuration space () of the N balls 
is a subset of TN": from T N" we cut out (~) cylindric scatterers: 

•,.i = {Q = (q~ ..... q N ) e T  N' :  Iq,-qjl <2r}  
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1 <~i<j<<.N. The energy H =  J,--N 2 52..~ vi and the total momentum P = ~  vi 
are first integrals of motion. Thus, without loss of generality, we can 
assume that H =  �89 and P = 0 and, moreover, that the sum of spatial com- 
ponents B = ~U qi = 0 (if P :/: 0, then the center of mass has an additional 
conditionally periodic or periodic motion). For these values of H, P, 
and B, the phase space of the system reduces to M : = Q  x 5 aN . . . . . . .  ', 
where 

Q : =  Q ~ 0 : ~ q , = 0  
1 

with d := dim Q = N.  v - v, and 5 :k denotes, in general, the k-dimensional 
unit sphere. It is easy to see that the dynamics of the N balls, determined by 
their uniform motion with elastic collisions on one hand, and the billiard 
flow {S': t e R} in Q with specular reflections at OQ on the other hand, 
conserve the Liouville measure dp = const- dq .  dv and are isomorphic. 

In the aforementioned billiards the smooth components OQi of the 
boundary of Q are convex from inside the domain. We can, in general, 
consider billiards in bounded, connected, closed domains on the d-torus T a. 
We say that such a billiard is semidispersing (dispersing) if the smooth 
components of the boundary are convex  (s tr ict ly  convex)  from inside the 
domain. Thus the system of two hard balls is dispersing while that of N >/3 
balls is semidispersing. The dispersing (semidispersing) property of these 
billiard lies behind the proofs of their ergodicity (and in all cases automati- 
cally of their K-property as well). 

A brief summary of the results: 

1. In 1970, Sinai, in his celebrated work, (7) proved the K-property of 
two two-dimensional discs ( N =  2, v = 2; see also ref. 2). 

2. In 1987, Chernov and Sinai ~176 established the K-property of two 
balls on an arbitrary-dimensional torus ( N =  2, v > 2). 

3. In 1989, Krhmli et al. c3~ considered a three-dimensional ortho- 
gonal cylindric billiard; they obtained its K-property and thus this 
was the first semidispersing--but not dispersing--billiard whose 
ergodicity was shown. 

4. In 1990, Kramli et al. ~4) demonstrated the K-property of N =  3 
balls on the v-torus whenever v/> 2. 

5. In 1991,' Krhmli et al. (5) improved their methods to get the 
ergodicity of N =  4 balls on the v-torus whenever v/> 3. 

6. In 1992, Bunimovich et al. (7~ introduced a Hamiltonian model of 
an arbitrary number of balls in arbitrary-dimensional space; the 
walls of the domain where these balls can move are convex 



590 Sim&nyi and Sz~sz 

from inside the domain and the authors were able to exploit the 
resulting hyperbolicity to derive the K-property. Their proof also 
needed an additional constraint: the invariance of the order of 
balls. As to this invariance, the model is similar to a toy model of 
Chernov and Sinai, the so-called pencase. 

7. In 1992, Simhnyi tg~ was able to establish the strongest result yet 
for hard-ball systems: the system of N~> 2 balls is ergodic on the 
v-torus whenever v/> N. 

8. In 1993, Szhsz c11' 12~ started a systematic study of cylindric billiards 
and found a sufficient and necessary condition for the ergodicity of 
a class of them: the orthogonal cylindric billiards. 

Return to the model of the present paper. The proof of our theorem 
is based on the strategy formulated in refs. 3 and 5. Indeed, in the spirit of 
the latter work, the proof of global ergodicity of a semidispersing billiard 
should be based on a suitable definition of richness and then essentially 
consist of three parts: 

1. Geometric-algebra part for treating neighborhoods of rich points. 

2. Dynamical-topological part for handling the subset of nonrich 
points. 

3. Finally, separate arguments for singular trajectories (also settling 
the Chernov-Sinai Ansatz). 

Though our definition of richness, in its spirit, is analogous to the one 
used in ref. 12, the arguments of that work are not applicable here. There 
the method is based on the abundance of pairs of different cylinders such 
that their base spaces (like L 1 and L 2 in our context) have nontrivial inter- 
sections and this property was used throughout the whole proof. Closer to 
our situation is the case of N =  3 balls on the 2-torus t41 where the con- 
figuration space of the isomorphic billiard is four-dimensional and there 
are three cylindric scatterers each with a two-dimensional base. We can, 
indeed, use several ideas of that work, though still there is a fundamental 
difference: the scatterers of the hard-ball billiard inherit the permutation 
invariance of the balls. This invariance led, in particular, in ref. 9 to the 
connecting path formula that, at least according to our knowledge, is 
missing for general cylindric billiards. 

The paper is organized as follows. In Section 2 we present the notion 
of richness, formulate the main lemmas, and indicate how they imply the 
theorem. Section 3 is devoted to the geometric-algebraic part 1 by proving 
Main Lemma 2.2. Section 4 then settles the dynamical-topological part 2 
by proving Main Lemma 2.3 and also contains the necessary remarks as to 
part 3. 
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For brevity, our exposition relies heavily on earlier work. t3-6' ~2) To 
help the reader, however, we everywhere provide precise references to the 
occurrence of the necessary definitions, statements, and arguments. 

2. N O T I O N  OF R I C H N E S S ,  M A I N  L E M M A S ,  A N D  THE PROOF 

Similarly to ref. 5, M* will denote the set of phase points whose 
orbits contain an infinite number of collisions among which not more than 
one is singular. M ~  M* will be the subset of regular phase points, and 
M ~ : = M * \ M  ~ Moreover, 6p~+ will denote the collection of all 
phase points x e aM for which the reflection, occurring at x, is singular 
(tangential or multiple) and, in the case of a multiple collision, x is 
supplied with the outgoing velocity V § We remind the reader that a trajec- 
tory segment S[a'b]x is called regular (or nonsingular) if it does not hit 
singularities (S ta. bl x n ~ R  § = ~ ;  cf. ref. 4). 

Consider the regular trajectory segment S [a'blx, - ~ <~ a < b <~ ~ ,  
x e M. Its symbolic collision sequence is the list of subsequent cylinders of 
collisions (C j' ..... CJk), 1 ~< k, of the trajectory and can be described by the 
sequence (j~ ..... Jk), J /=  1, 2, 1 <~l<~k. (If the trajectory hits one or more 
singularities, then, of course, there are a finite number of such sequences for 
any finite orbit.) The reader is reminded of the concept of island from ref. 5: 
it is a maximal subsequence of the symbolic collision sequence consisting 
of consecutive collisions with the same cylinder. 

Def in i t ion  2.1. We say that the trajectory segment st~'bJx is rich 
if its symbolic collision sequence contains at least four islands. If the 
trajectory segment hits singularities, then this property is required for any 
trajectory branch. 

Finally, the trajectory segment is poor if it is not rich. 

Main Lemma 2.2. Assume that the trajectory segment S[~'b]x is 
regular, S~x, Sbx r aM, and its trajectory segment is rich. Then there exist 
a neighborhood U c  M of x, and a submanifold N such that : 

1. codim N>I 2. 

2. For every y ~ U \ N ,  S t~. b]y is sufficient. 

(As to the definition of sufficiency, see Definition 2.4 of ref. 6.) 

The demonstration of Main Lemma 2.2 will be the content of Section 3. 
Denote by Mp ~ the subset of poor phase points from M ~ (A phase point 

is called poor if its entire trajectory is poor.) There may exist some trivial 
codimension-one submanifolds of nonsufficient points for our billiard. 
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Therefore we should exclude a finite union of codimension-one submanifolds 
to obtain M *. 

Consider the subbilliard (M s, (SJ) R, d#0, j = 1, 2, on the 4-torus with 
the cylinder C j as the only scatterer. By Lemma A.2.1 from ref. 12, for fixed 
j = 1, 2, the subset 3]tJ of phase points from M j whose orbits have no colli- 
sions at all is contained in a finite union )~rJ := Ut/= J E~ of submanifolds 
such that for every l: 1 <~l<~lJ: 

1. We have 

codimMj E/1> 1 

2. E) / i s  compact. 

Since M, M j ( j =  1, 2 ) c T 4 x  S 3, it makes sense to consider the con- 
nected components of the set 

M # := M\(i~t  I u ) 0  ~2) 

By Lemma A.2.1 of ref. 12 their number is finite. Denote them by f2~ ..... f2t 
(1 ~<I< oo). 

Now we can claim: 

M a i n  I . e m m a  2.3. M ~ c~ M # c~ M,,~ is a residual subset of M. 

The demonstration can be found in Section 4. Recall the meaning of 
the phrase "residual set": Such a set can be covered by a countable collec- 
tion of codimension-two (/>2) closed sets with zero measure. M,~ denotes 
the set of all nonsufficient (nonhyperbolic) phase points. 

The reader familiar with the technique of establishing global ergodicity 
of semidispersing billiards already knows that the treatment corresponding 
to the previous main lemmas for singular points on one hand, and the 
verification of the Chernov-Sinai Ansatz on the other hand, follow from 
the next result: 

Main  Lemma 2.4. For every cell C of maximal dimension 5 in 
S,a# +, the set C,.s c C of all eventually simple phase points can be covered 
by a countable family of closed zero-subsets (with respect to the surface 
measure #c  in C) of C. 

We say that a point x ~ 6a~ + is eventually simple if: 

1. The semitrajectory Sn+x is regular. 

2. There is a number to > 0 such that the trajectory segment S "~ OO~x 
contains not more than one island. 
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As said earlier, Main Lemma 2.4 can be derived in almost exactly the 
same way as Main Theorem 6.1 in ref. 6, and, for brevity, we are satisfied 
by giving some indications at the end of Section 4. 

Given Main Lemmas 2.2-2.4, the proof of our theorem is not 
difficult. First of all, the transversality of A = and A 2 is necessary. For 
if dim(A ~ h A 2 ) > 0 ,  then by ref. 3 and by ref. 7, respectively, the system is 
the product of a K-system and a conditionally periodic motion and, 
consequently, is not K. 

Assume thus that dim A ~ h A 2 = 0  and A ~ is transversal to the 
orthogonal complement L 2 of A 2, which is just to require that the subspaces 
A ~ and A 2 are in duality with respect to the Euclidean scalar product of R 4. 
It is an easy consequence of these conditions that the orthocomplements L 
and L 2 are transversal as well, and they are also in duality with respect to 
the Euclidean scalar product. 

Since our main lemmas were formulated completely identically to 
those in ref. 12, the way the theorem follows from them is also the same 
and will be omitted. We only note that the traditional strategy also applied 
in ref. 12 first implies that each component ~2~ ..... s belongs to one ergodic 
component. Then the completion of the proof, i.e., showing that these 
components form, in fact, exactly one ergodic component, follows from 
Lemma A.2.3 of ref. 12 as shown in the paper just mentioned. Finally, we 
note that Sinai's transversality condition holds true for the intersection of 
the surfaces of the cylinders C J: the normal vectors to these surfaces are 
always nonparallel, for they belong to the transversal subspaces L j. By 
Sinai's classical result (8) this ensures that the moments of collisions cannot 
accumulate in bounded time intervals. �9 

3. G E O M E T R I C - A L G E B R A I C  C O N S I D E R A T I O N S :  P R O O F  OF 
M A I N  L E M M A  2.2 

Throughout the whole section we will only consider regular trajectory 
segments. 

Proof  o[ Main L e m m a  2.2. Consider first a bounded trajectory 
segment S["'b]Xo ( a < 0 ,  b > 0 )  with the island structure (1, 2) such that 
(for simplicity) t = 0  separates the collisions with C = and C 2. Consider, 
moreover, an arbitrary configuration-displacement vector AQ neutral 
with respect to "the segment S["'b]Xo . The corresponding time shifts 
(advances) are denoted by ct and ft. (For their definition see, for example, 
ref. 9, I, Section 2.) Here we need to introduce four linear operators 
of R4: Pj is the orthogonal projection onto the subspace L j ( j =  l, 2), while 
~j is the (nonorthogonal) projection of ~4 onto ,4 j corresponding to the 
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direct sum decomposition R4= A~+ A 2. The neutrality of zlQ with respect 
to island I (with advance c~) precisely means that P ~ ( d Q - ~ V o ) = O ,  that 
is, A Q - e V o = a ~ e A  1. (Here Vo denotes the velocity vector of Xo.) 
Similarly, the neutrality with respect to island 2 with advance fl means 
that d Q - f l V o = a 2 ~ A  2. By subtraction ( ~ - f l ) V o =  a 2 - a t ,  so a t = 
(/~-ct) zq(Vo), a2 = ( a - f l )  rc2(Vo). For AQ we obtain the following sym- 
metric pair of formulas: 

A Q = o t V o + ( ~ - o t ) n , ( V o ) = ~ V o + ( O ~ - ~ ) n 2 ( V o )  (3.1) 

This formula immediately shows that the dimension of  the space of neutral 
vectors (with respect to S t~" blXo) is two. (Together with the flow direction.) 

Let us now suppose that there is an additional island of type 1 follow- 
ing the above considered two, and the separating moment of time between 
the last two islands is t l. We keep all notations of the arguments resulting 
in (3.1). The advance of the new island is denoted by ~,. From (3.1) and 
the basic properties of the flow we get that the investigated configuration 
displacement AQ at time tl is 

AQ(t,  ) = flY,, + (~ - [3) ~2(vo) (3.2) 

On the other hand, by the analog of (3.1) applied to the second pair of 
islands, we have 

AQ(t, ) = flY,, + (y - /3 )  rcz(V,,) (3.3) 

Now by subtraction 

(~- ~) vo + ([J- ~) V,, ~ A I (3.4) 

The advantage of the last formula is that it forces the three advances to 
be equal (and, therefore, gives the required sufficiency of the trajectory 
segment!) whenever the velocity vectors V o and V,, are linearly independent 
over the subspace AI, that is, they are independent and they span a sub- 
space transversal to AI. If this is not the case, then the velocity change 
V, , -Vo  is in the subspace spanned by V o and A 1, denoted by span 
( Vo, A 1). But, by the nature of the dynamics involved, this difference must 
also belong to the subspace L 2. However, the assumed tranversality 
between A ~ and L 2 implies that the intersection 

span( Vo, A ~) n L 2 is a line (3.5) 

This line is determined by the billiard table and V 0. Let us now apply a 
pure configuration translation to the original phase point Xo such that the 
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vector describing this translation is in L 2 but it is not parallel with P2(Vo). 
Under the effect of such translations the velocity difference V , , -  V o moves 
along an arc of a circle in L 2. This observation, together with (3.5), shows 
that outside of some codimension-one smooth submanifold of a neighborhood 
of Xo the trajectory segment island structure (I, 2, 1 ) is sufficient. 

Let us go further and suppose that a brand new island of type 2 
precedes the collision sequence (1, 2, 1) studied above. Applying the above 
arguments, we get that the condition for the nonsufficiency of the "left 
part" (2, 1, 2) is the following one: 

where 

V, 2 -  Vo e span(Vo, A Z ) n L  1 (3.6) 

span( Vo, A 2) n L ~ is a line (3.7) 

(Here V,2 is the velocity at some moment t2 between the first two islands.) 
Now (3.6) determines a codimension-one smooth submanifold X - ,  just like 
the former relationship: 

V , , -  Voe span(Vo, A I ) n L  2 (3.8) 

which defines the codimension-one submanifold X +. Our task is now to 
show that X -  and X + are transversal submanifolds. 

We will easily find a pure configuration displacement tangent vector 
AQ of M, at Xo ~ X -  n X + that is tangent to X + but is not tangent to X - .  
Obviously, the first requirement is fulfilled by any A Q ~ A  2, while the 
second one will be valid whenever AQespan(Vo, At). By the assumed 
transversality between A ~ and A-', the intersection of the subspaces A 2 and 
span(Vo, A ~) is one-dimensional; therefore it is certainly possible to choose 
a vector AQ with the required properties. 

The proof of Main Lemma 2.2 is now complete. �9 

4. D Y N A M I C A L - T O P O L O G I C A L  PART: 
P R O O F  OF M A I N  L E M M A  2.3 

From our definition of richness it follows that poor phase points 
undergo not more than three collisions during their whole trajectory; 
thus M ~ n M # := M ~ n M ~ n M ~ where M ~ denotes "the set of regular 
trajectories containing exactly i islands ( i=0 ,  1, 2,...). (Of course, 
M~ n M ~ = ~ . )  

The residuality of M ~ follows by a trivial adaptation of the proof of 
sublemma 2 of ref. 3. Thus Main Lemma 2.3 will immediately come from 
our next two lemmas. 
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I . e m m a  4.1. M ~ is a residual subset. 

I . e m m a  4.2. M ~ M,,, is a residual subset. 

The proofs of these lemmas are analogous to the proof of Main 
Lemma 5.1 from ref. 5 and we only give the necessary vocabulary and 
supplements to adapt it to our situation. 

Proof of Lemrna 4. 1. It is sufficient to show that any x ~ = (QO, V o) 
(x ~ ~ OM) has a neighborhood U such that U c~ M ~ is residual. We can and 
do assume that x~176 For simplicity we suppose that SR-x ~ has 
just one island of type C ~ and SR+x ~ has just one island of type C 2. 
Choose a small open ball neighborhood U c  M\t~M of x ~ We denote 

F_ := {xe  U: (SR-x)c~int(OM2)= ~J} 
F+ := {x~ U: (S~§ } 

(4.1) 

(4.2) 

[Here int(OMO denotes the part of the boundary OM of M that 
corresponds to the proper (nontangential) collisions with the cylinder CJ.] 

First we construct the invariant manifolds, the fundamental tools of 
the proof. Of course, for any x = (Q, v) ~ U 

7;(x) := {(Q', V ) E U : Q ' - Q E A 2 } ,  

~,;(x) := {(Q', v )e  U : Q ' - Q e A  I} 

In constructing 7~xp(X), instead of using Lq2" v~ of ref. 5, here we need the 
three-dimensional submanifold L(Q-P~(Q),  v -  Pl(V)) that can be 
obtained by fixing the orthogonal projections of Q and V onto the con- 
stituent space A ~ of C i. [The operator I - P ~  is just the projection onto A I. 
It is appropriate to admit here that, being in a torus instead of a Euclidean 
space, the configuration projection Q-P~(Q)  is only defined locally, but 
this is just fine for our local analysis in U.] Then 

~xp(x) := {y~L(O-P~(O) ,  v-P~(V))c~ U: dist{(S~)' x, (S~) 'y} ~ 0  

exponentially fast as t --. - ~ } 

Analogously, in the definition of 7~xp(x), we use the submanifold 
L(Q - P2(Q), v -  P2(v)). Thus 

T'-xp(X) :-- {y~L(Q-P2(Q) ,  v-P2(V))c~ U:dist{(SZ)'x, (S2) 'y}  --+0 

exponentially fast as t ~ oo } 
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The pseudo-(un)stable invariant manifolds are defined by (5.6) of ref. 5, 
and 

F+ := {x ~ U: (S R § n int(OM ~) = ~ if the radius r ~ is shrunk to r '  - e } 

(4.3) 

F'_ := {x ~ U: (S R-x) ~ int(0M 2) = ~ if the radius r 2 is shrunk to r 2 - e } 

(4.4) 

Now the analogs of Lemmas 5.3, 5.8, and 5.9 of ref. 5 are automatically 
valid. Moreover, dim ~x~ = 1, dim yo= 4, and one dimension is missing 
here, too. The solution is again similar to ref. 5. For the proof of the 
residuality of F+ c~ F_ we need to prove the following proposition: 

P r o p o s i t i o n  4.3. For almost every point x~  U, almost every other 
point y in a suitably small neighborhood of x can be connected with x by 
a sequence of sequentially intersecting (i.e., the neighboring members are 
intersecting) pseudostable and pseudounstable manifolds. 

Here the key issue is the missing seventh dimension from the span of 
the tangent spaces of these pseudoinvariant manifolds. The problem only 
arises in connection with the velocity variations, for yo alone already con- 
tains all pure spatial variations. So let us focus on what happens to the 
velocity vector V e S  3 while executing exponential unstable and stable 
perturbations corresponding to 7~p and Y~xp. The effect of the first one on 
V is just some rotation around the subspace A~, while the second type of 
variation just causes rotation around the subspace A 2. The whole problem 
will be settled and Main Lemma 4.1 will be proved if we prove the follow- 
ing geometric lemma concerning some special transformation groups: 

L e m m a  4.4. Using the notations of this paper, assume that A ~ is 
transversal to both A 2 and its orthogonal complement L 2. Let Gj be the 
group of all rotations around A j, and denote by G the transformation 
group generated by G~ and Gz. l i t  is known from the classical theory of 
Lie groups that the group G is a connected--not necessarily closed--Lie 
subgroup of SO(4).] Then, the natural action of G on S 3 is transitive. 

R e m a r k .  It is very appealing to conjecture that, under the condi- 
tions of this lemma, the group G is necessarily the whole special orthogonal 
group SO(4). However, right after the proof of Lemma 4.4 we present a 
family of examples--involving the one mentioned right before the theorem 
in the introduction--showing that sometimes G is merely the four-dimen- 
sional Lie group U(2). 
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Proof. First of all, we claim the following: 

Sublemma 4.5. Under the conditions of Lemma 4.4 the G-action 
on S 3 has an open orbit with full measure. (Or, equivalently, it has an 
open and dense orbit.) 

Proof of the Sublemma. Observe that the question about the open- 
ness of orbits is, by the very nature of things, a local one; therefore it is 
enough to consider the infinitesimal action of the Lie group G on the three- 
sphere. This means that we multiply (from the left) the points V of S 3 by 
the Lie algebra of G, and thus we obtain the tangent space of the orbit of 
V. In order to understand (to some extent) the Lie algebra of G, we con- 
sider an infinitesimal generator Xj of the one-parameter subgroup Gj. 
A possible choice for Xj is a rotation by the right angle (in one of the 
two possible directions) around AL Next we define a suitable base 
{e~, f~, e2,fz} in •4 situated pretty symmetrically with respect to the pair 
of subspaces (L 1, L2), so that the matrices of the generators Xj become 
rather simple in this base. Namely, set 

a := max{llP2(x)l[: x e L '  and Ilxll = 1 } (4.5) 

b := rain { II P2(x)l[: x ~ L i and 11 x II = 1 } (4.6) 

By the assumptions of Lemma 4.4 we have 0 < b <~ a < 1. We note that the 
relative position of the two-dimensional subspaces A ~ and A 2 (or, equiv- 
alently, the relative position of their orthocomplements L 1 and L z) is com- 
pletely characterized by the acute angles ct o = arccos(a) and flo = arccos(b). 
The first of these angles is the minimal possible angle between a nonzero 
vector of L ~ and the subspace L 2, while the second one is the maximum of 
such angles. Of course, the role of the two subspaces can be interchanged 
in these definitions. The vector el is now chosen to be one of the two 
(antipodal) unit vectors of L ~ for which the maximum of (4.5) is attained. 
(In the case of a=b any unit vector of L ~ would do.) The vector e2~L 2 
is the uniquely determined unit vector that makes an angle of ~t o with el. 
Note that e2 has the same direction as the orthogonal projection P2(e~) of 
e~ onto L 2. The pair of unit vectors f i e  L j is defined analogously:f l  is one 
of the two opposite unit vectors of L ~ that makes the maximum angle flo 
with L 2 and f2 is the uniquely determined unit vector of L 2 that makes the 
angle fl0 with f l .  By elementary properties of the quadratic forms, the pair 
{ej,fj} is an orthonormal base in L j and (e~ , f j )  = 0  for i , j= 1,2. It is 
now an easy task to write down the matrices of the rotations Xj in the base 
{el, f l ,e2,f2}: 
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- b  0 0 0 0 

0 a 0 , 0 0 0 
Xi = X2 = 

0 0 - b  0 - 1  

0 0 0 1 0 

Of course, the Lie algebra of the group G is the Lie subalgebra of so(4) 
generated by X~ and )(2. So next we compute the Lie bracket of these 
matrices: 

[X,, X~] = 

- ab 0 - b Oa\ o) 0 - a b  0 - 

b 0 ab 

0 a 0 ab 

The products of the matrices XI, X2, [X~, X2] with an arbitrary unit 
velocity vector 

V= Vlel + wl f l + v2ez + w2f2 ~ S 3 

are as follows: 

X i V =  

 w w2 (O)o 
I v l + a v 2  l ,  X2V= - b w l - w 2  ' 

a , , + , ,  

[ x , ,  x22 v =  

-b(avl  +v2) \ 

-a(bwl  + w2) I 
b(vl +av2) ] 

a(wl + bw2) / 

(4.7) 

If for some V~ S 3 the above three vectors are linearly independent, then 
the orbit of V is obviously open. The unwanted linear connectedness of the 
vectors in (4.7) is easy to check. If the point VE S 3 does not belong to 
either of the subspaces A j ( j =  1, 2), then X~ V and X2 V are independent. 
However, the intersections A J n  S 3 are circles with zero measure, so they 
can be discarded. Once X~ V and X2 V are independent, the linear 
dependence of the third vector [X, ,  Xz] V on the first two can be checked 
separately on the first two and last two coordinates. In both cases the 
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dependence means that a certain two-by-two determinant vanishes, and the 
resulting two equations are the same: 

Q(V) := b(a(v~ + v~) + (a 2 + 1 ) v~ v2) + a(b(w~ + w~) + (b 2 + 1 ) w I w2) = 0 

(4.8) 

It is easy to see that the signature of the quadratic form Q is (2, 2), and I~ 4 
is the Q-orthogonal (and Euclidean orthogonal, too) direct sum of the sub- 
spaces H =  span(et, e2) and H~-= span(f~,f2), and Q is indefinite in both 
subspaces. (The relations 0 < b  and a < l  are used here.) Due to the 
signature (2, 2), the hypersurface Q(V)=  0 dissects the sphere S 3 into two 
connected open sets S 3_ and S 3 according to the sign of Q. We have 
proved that all points of the open (in S 3) set 

( p = S 3 \ ( {  V e S 3  : Q ( V ) = O }  u ,4' w ,4 2) (4.9) 

have open G-orbits. We observe here that it is not necessary to drop the 
circles AJr~S  3 ( c S ~ )  from S 3 in the formula (4.9), since for the points 
V~ A~n S 3 the vector X2 V is not tangential to the circle A~r~ S 3, so the 
action of the group G2 moves this point V out of the mentioned circle, and 
a similar argument applies to the points of ,42 c~ $ 3  Thus, so far we have 
seen that the open set S 3 - w S~  is covered by the open orbits of the 
G-action on S 3. By the connectedness of S 3 , each of these two sets belongs 
to one orbit. The last thing we need to do in order to prove Sublemma 4.5 
is to connect S 3_ and S~ by the G-action. The one-parameter subgroup of 
G generated by [X 1, X2] will give use the needed help. Namely, direct 
inspection shows that the subspace H = span(e~, e2)  is invariant under the 
multiplication by [X~, X2], and the restriction of this Lie bracket to H is 
nonzero. Therefore the action of the one-parameter subgroup generated by 
[X,,  X2] on H can only be the full special orthogonal group of H. Since 
the quadratic form is indefinite on H, the arising rotations of H transport 
points from S 3_ to S~. Hence the sublemma. 

Finishing the proof  of  Lemma 4.4. By Sublemma 4.5 there is an 
open and dense orbit of G. Since the orbits of the action of (~ (the closure 
of G) are the closures of the G-orbits, we have that (~ acts transitively on 
S 3. Therefore, every G-orbit is dense, so--by Sublemma4.5 again--the 
action of G on S 3 is also transitive. Hence Lemma 4.4. Ill 

Thus Lemma 4.1 is also established. �9 

Example .  Make the usual identification between our real Euclidean 
space •4 and the two-dimensional complex Hermitian space C 2 by identi- 
fying (x l , x 2 , y l , y 2 ) ~ R  4 with the pair of complex numbers ( z t , z2 )=  
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(x~ +iy~, x2+iyz). The Hermitian product is (as usual) (zl ,  z2)=2~z2. 
Suppose that the two subspaces A j ( j =  1, 2) of our considerations are 
(one-dimensional) complex subspaces. The reader can easily check that this 
complex subspace situation precisely covers the cases where the minimum 
and maximum angles are equal: 

cos(~o)=COS(Bo) 

the common value of these cosines being just the absolute value of any 
(Hermitian) scalar product of two unit vectors from L ~ and L 2. Note that 
the modified billiard system of three disks on T2--mentioned in the intro- 
duction before the theorem--fits this case: the minimum and maximum 
angles are both n/3. 

Since the rotations in L j are unitary transformations, the generated 
group G must be a subgroup of the four-dimensional Lie group U(2). On 
the other hand, since the stabilizer subgroups (in G) of the points Ve S 3 
are at least one-dimensional, dim(G)>/4, therefore G is an open subgroup 
of the connected group U(2), showing G = U(2). 

The second part of this section contains the proof of Lemma 4.2. It 
may be a bit surprising that this proof is much simpler than that of 
Lemma 4.1. But one should keep in mind that in the case of Lemma 4.2 we 
have three islands at hand, and this fact gives us more skills for the proof. 

Proof of Lemma 4.2. We can and do assume that x~  
( M ~  For simplicity we suppose that, for some t > 0  with 
S'x~162 Sa -x  ~ has just one island of type C 2, St~ ~ has just one 
island of type C ~, and S'+R+x ~ has just one island of type C 2. We can 
again apply the method of ref. 5 and, for brevity, here again we only 
provide the necessary vocabulary. 

Set the notation S'x = x(r)  = (Q(z), v(z)) for an arbitrary real number 
T and phase point x =  (Q, V)=  (Q(0), v(0)). Consider a very small open 
ball neighborhood U of x ~ in M with the following property: For every 
point x e  Uc~M ~ the symbolic collision structure (island structure) of x 
agrees with that of x ~ By the results of Section 3, the set U n M ~ c~ M,,., is 
contained in the codimension-one smooth submanifold F of U: 

U n M ~  nM,,s c 1  " (4.10) 

where 

F : = { x ~ U :  V( t ) -V(O)~span(V(O) ,AZ)nL l} (4.11) 

822/76/I-2-40 
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Now we define the usual closed subset of F describing the avoiding of the 
first cylinder in negative time: 

F_ := {x e F: the negative trajectory o fx  

has no proper collision with C t } 

Since the set U n M ~ c~ M,,s is a subset of F_,  in order to prove Lemma 4.2 
it is enough to show that the closed set F_ has no interior point in F. 
Assume now the contrary: 

The set F_ contains an open disk D in F. We will get a contradiction. 
Choose a suitably small positive number e and set 

/3 := {x = (Q, V) ~ U : ~y = (Q', v ' )  ~ D such that 

V= V', Q - Q' e A z, IIQ - Q'II < e} (4.12) 

It is obvious that--a l though the negative trajectories of the points of /3 do 
not necessarily avoid the original cylinder C ~--they do avoid the modified 
first cylinder that can be obtained from C 1 by shrinking it by e. Along the 
lines of the proof of Sublemma 2 of Section 5 in ref. 3, by an application of 
the measure-theoretic "ball avoiding lemma" for the subbilliard with the 
lone cylinder C 2 we get that the set /3 must have measure zero. We will 
arrive at a contradiction (thus proving Lemma4.2),  if we prove the 
following: 

kemma 4.6. For every point x =  (Q, V ) ~ F  the two-dimensional 
smooth manifold 

{ y = ( Q ' ,  V ' ) e U :  V = V ' , Q - Q '  ~A 2} 

is transversal to F at x. 

Proof. In the spirit of Section 3 (see also the definition of F and the 
argument at the very end of Section 3) it is enough to find a vector from 
the set difference 

A2\span (V ,  A 1 ) 

But just this task was accomplished at the end of the mentioned section. 
Hence Lemma 4.2. �9 

S i n g u l a r  O r b i t s .  To end this section we turn to some thoughts 
about the proof of Main Lemma 2.4. Our subset Ces of eventually simple 
points is analogous to the subset Ced of eventually decomposing points 
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used in ref. 6 (and in ref. 12). For any t 0 ~ R  and any j =  1, 2, we can also 
introduce the subset 

C,.~(to,j) :=  {x~Ces : Q(S '~  

(No collision with C 3-J after to.) Without  loss of generality we can con- 
sider the case j =  2. Now the definitions o fyo ,  U(yo), F+, F'+ are evidently 
the same as in ref. 6: 

F+ := {z~ U(yo) :Q(SR+z)nOC l = 0 }  

F+ :=  {zE U(yo) :Q(Sn+z)nOC l* = 0 }  

(the star denotes the modified cylinder shrunk by some ~), whereas for 
y := (Q, V) 

~ ( y )  :=  {(Q', v): Q ' = Q + 2 V + A  z, 2 ~ R }  

is and thus dim y~=3 .  Further, the definition of ~exp(Y) from Sect ion4 is 
adopted instead of the manifolds Y~.2(') and ~'~,4('). Of  course, 
dim Y~xp = 1. The dimension of 

s ~)P(y) :=  {Zeyo(" ) :  Q ( z ) - Q ( y )  • V(y)} 

is, of course, 2. The dimension of the generate 

y~(y):= 0 ~;(-')= 0 ~,~;.(z) 

is then 3, as required. It is easy to see that, with these modifications in the 
definitions, the proof  of Main Theorem 6.1 of ref. 5 can literally be copied. 
Hence Main Lemma 2.4. �9 
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